Research
Research Experience Narrative
Thus far, I have participated in four independent laboratories that span the range of epigenetics, genetics, and cardiac related projects.
While at Pitzer College, I joined Dr. Emily Wiley's laboratory and conducted novel epigenetic research on the histone deacetylase Thd2 in Tetrahymena thermophila. Specifically, I examined Thd2’s effects on histone acetylation and methylation in both euchromatin and heterochromatin. The findings of this research formulated my thesis in molecular biology and were presented to the faculty and students of The Claremont Colleges.
Immediately after receiving my bachelor's degree, I traveled to Tübingen, Germany to further my research experience at the Friedrich Miescher Laboratory of the Max Planck Society. I joined Dr. Felicity Jones' laboratory to study the molecular basis of adaptive divergence and speciation in natural vertebrate populations using three-spined stickleback fish as a model organism. While at the Max Planck Institute, I helped design experiments to discover recombination hotspots using microsatellites and DNA sequencing, while also using molecular cloning techniques to create plasmids for transfection.
After studying the genetics of speciation, I joined Dr. Joseph Woo's laboratory at Stanford’s Cardiothoracic Surgery Department. The multidisciplinary nature of the Woo lab offered countless opportunities to expand my research knowledge. I contributed to a broad range of cardiac research projects including RNA-sequencing studies of human cardiac tissue, utilizing cyanobacteria to re-oxygenate ischemic tissue, engineering and utilizing an ex vivo heart pump to measure pressures and flow rates pre and post cardiac operations, developing synthetic blood vessels, and delivering bioengineered, therapeutic cytokines into cardiac tissue in an ovine myocardial infarction model via a sheer-thinning hydrogel, among several others. These efforts amounted to several publications.
Prior to the start of my medical education at the George Washington School of Medicine and Health Sciences, I joined Dr. Tim McCaffrey's research laboratory which has a range of research projects that leverage RNA-sequencing technologies with the goal of discovering biomarkers for diagnostic implementation. During my first year in medical school, I received the W.T. Gill Summer Fellowship ($4,000) to research biomarkers in patients with myocardial ischemia with no obstructive coronary arteries (INOCA). I presented my findings from this project at ACC.24 in Atlanta and published in Frontiers in Cardiovascular Medicine. Additionally, I programmed and built a prototype device (known as CyBIS) that attempts to rapidly detect infection, and preliminary data from this device was published in the Journal of Medical Diagnostic Methods. Additional studies I participated in included sequencing studies on coronary artery disease (CAD), sepsis, and appendicitis.
Publications
McCaffrey, T. A., Wargowsky, R., Jaatinen, K., Al Munajjed, F., Alqalam, F., Perkins, J., Hayden, Z., Pasquale, M., Holloway, G., Goldman, J., Falk, Z., Jepson, T., Yamane, D., LaFleur, J., Meltzer, A., Shahamatdar, S., Heidish, R., Shaykhinurov, E., Loganathan, A., Loganathan, T., & Bolden, T. (2024). A Point-of-Care Diagnostic Platform for Detecting Host Immune Activation due to Infections: Cytocapture of Biomarkers In Situ (CyBIS). Journal of Medical Diagnostic Methods, 13(6), 1000501.
Cruz, P. D., Wargowsky, R., Gonzalez-Almada, A., Sifontes, E. P., Shaykhinurov, E., Jaatinen, K., Jepson, T., Lafleur, J. E., Yamane, D., Perkins, J., Pasquale, M., Giang, B., McHarg, M., Falk, Z., & McCaffrey, T. A. (2024). Blood RNA Biomarkers Identify Bacterial and Biofilm Coinfections in COVID-19 Intensive Care Patients. Journal of intensive care medicine, 39(11), 1071–1082. https://doi.org/10.1177/08850666241251743
Jaatinen, K., Shah, P., Mazhari, R., Hayden, Z., Wargowsky, R., Jepson, T., Toma, I., Perkins, J., & McCaffrey, T. A. (2024). RNAseq of INOCA patients identifies innate, invariant, and acquired immune changes: potential autoimmune microvascular dysfunction. Frontiers in cardiovascular medicine, 11, 1385457. https://doi.org/10.3389/fcvm.2024.1385457
Traeger, G.R., Jaatinen, K.J., Majesky, M.W., & Greene C.L (2023). The Advent of Spatial Omics in Congenital Heart Disease. Curr Treat Options Peds. https://doi.org/10.1007/s40746-023-00282-1
McCaffrey, T. A., Toma, I., Yang, Z., Katz, R., Reiner, J., Mazhari, R., Shah, P., Falk, Z., Wargowsky, R., Goldman, J., Jones, D., Shtokalo, D., Antonets, D., Jepson, T., Fetisova, A., Jaatinen, K., Ree, N., & Ri, M. (2023). RNAseq profiling of blood from patients with coronary artery disease: Signature of a T cell imbalance. Journal of molecular and cellular cardiology plus, 4, 100033. https://doi.org/10.1016/j.jmccpl.2023.100033
Shin, H. S., Thakore, A., Tada, Y., Pedroza, A. J., Ikeda, G., Chen, I. Y., Chan, D., Jaatinen, K. J., Yajima, S., Pfrender, E. M., Kawamura, M., Yang, P. C., Wu, J. C., Appel, E. A., Fischbein, M. P., Woo, Y., & Shudo, Y. (2022). Angiogenic stem cell delivery platform to augment post-infarction neovasculature and reverse ventricular remodeling. Scientific reports, 12(1), 17605. https://doi.org/10.1038/s41598-022-21510-y
Williams, K. M., Wang, H., Paulsen, M. J., Thakore, A. D., Rieck, M., Lucian, H. J., Grady, F., Hironaka, C. E., Chien, A. J., Farry, J. M., Shin, H. S., Jaatinen, K. J., Eskandari, A., Stapleton, L. M., Steele, A. N., Cohen, J. E., & Woo, Y. J. (2020). Safety of photosynthetic Synechococcus elongatus for in vivo cyanobacteria-mammalian symbiotic therapeutics. Microbial biotechnology, 13(6), 1780–1792. https://doi.org/10.1111/1751-7915.13596
Greene, C. L., Jaatinen, K. J., Wang, H., Koyano, T. K., Bilbao, M. S., & Woo, Y. J. (2020). Transcriptional Profiling of Normal, Stenotic, and Regurgitant Human Aortic Valves. Genes, 11(7), 789. https://doi.org/10.3390/genes11070789
Shudo, Y., MacArthur, J. W., Kunitomi, Y., Joubert, L., Kawamura, M., Ono, J., Thakore, A., Jaatinen, K., Eskandari, A., Hironaka, C., Shin, H. S., & Woo, Y. J. (2020). Three-Dimensional Multilayered Microstructure Using Needle Array Bioprinting System. Tissue engineering. Part A, 26(5-6), 350–357. https://doi.org/10.1089/ten.TEA.2019.0313
Steele, A. N., Paulsen, M. J., Wang, H., Stapleton, L. M., Lucian, H. J., Eskandari, A., Hironaka, C. E., Farry, J. M., Baker, S. W., Thakore, A. D., Jaatinen, K. J., Tada, Y., Hollander, M. J., Williams, K. M., Seymour, A. J., Totherow, K. P., Yu, A. C., Cochran, J. R., Appel, E. A., & Woo, Y. J. (2020). Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine, 127, 154974. https://doi.org/10.1016/j.cyto.2019.154974
Pedroza, A. J., Koyano, T., Trojan, J., Rubin, A., Palmon, I., Jaatinen, K., Burdon, G., Chang, P., Tashima, Y., Cui, J. Z., Berry, G., Iosef, C., & Fischbein, M. P. (2020). Divergent effects of canonical and non-canonical TGF-β signalling on mixed contractile-synthetic smooth muscle cell phenotype in human Marfan syndrome aortic root aneurysms. Journal of cellular and molecular medicine, 24(3), 2369–2383. https://doi.org/10.1111/jcmm.14921
Stapleton, L. M., Steele, A. N., Wang, H., Lopez Hernandez, H., Yu, A. C., Paulsen, M. J., Smith, A. A. A., Roth, G. A., Thakore, A. D., Lucian, H. J., Totherow, K. P., Baker, S. W., Tada, Y., Farry, J. M., Eskandari, A., Hironaka, C. E., Jaatinen, K. J., Williams, K. M., Bergamasco, H., Marschel, C., … Woo, Y. J. (2019). Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nature biomedical engineering, 3(8), 611–620. https://doi.org/10.1038/s41551-019-0442-z
von Bornstädt, D., Wang, H., Paulsen, M. J., Goldstone, A. B., Eskandari, A., Thakore, A., Stapleton, L., Steele, A. N., Truong, V. N., Jaatinen, K., Hironaka, C., & Woo, Y. J. (2018). Rapid Self-Assembly of Bioengineered Cardiovascular Bypass Grafts From Scaffold-Stabilized, Tubular Bilevel Cell Sheets. Circulation, 138(19), 2130–2144. https://doi.org/10.1161/CIRCULATIONAHA.118.035231
Kawamura, M., Paulsen, M. J., Goldstone, A. B., Shudo, Y., Wang, H., Steele, A. N., Stapleton, L. M., Edwards, B. B., Eskandari, A., Truong, V. N., Jaatinen, K. J., Ingason, A. B., Miyagawa, S., Sawa, Y., & Woo, Y. J. (2017). Tissue-engineered smooth muscle cell and endothelial progenitor cell bi-level cell sheets prevent progression of cardiac dysfunction, microvascular dysfunction, and interstitial fibrosis in a rodent model of type 1 diabetes-induced cardiomyopathy. Cardiovascular diabetology, 16(1), 142. https://doi.org/10.1186/s12933-017-0625-4
Cohen, J. E., Goldstone, A. B., Paulsen, M. J., Shudo, Y., Steele, A. N., Edwards, B. B., Patel, J. B., MacArthur, J. W., Jr, Hopkins, M. S., Burnett, C. E., Jaatinen, K. J., Thakore, A. D., Farry, J. M., Truong, V. N., Bourdillon, A. T., Stapleton, L. M., Eskandari, A., Fairman, A. S., Hiesinger, W., Esipova, T. V., … Woo, Y. J. (2017). An innovative biologic system for photon-powered myocardium in the ischemic heart. Science advances, 3(6), e1603078. https://doi.org/10.1126/sciadv.1603078
Presentations
Jaatinen, K.J. (2023, Nov 15). Sequencing of blood RNA from INOCA patients identifies changes in innate, invariant, and acquired immune pathways. [Online Grand Rounds]. GW Cardiology Department.
Jaatinen, K.J. (2024, April 7). Sequencing of blood RNA from INOCA patients identifies changes in innate, invariant, and acquired immune pathways. [Poster presentation]. ACC.24, Atlanta, GA.
Jaatinen, K.J. (2024, April 25). Sequencing of blood RNA from INOCA patients identifies changes in innate, invariant, and acquired immune pathways. [Poster presentation]. GW Research Day, Washington, DC.